

HEF-003-1161001

Seat No.

M. Sc. (Sem. I) (CBCS) Examination

November / December - 2017

Mathematics: Paper - CMT - 1001

(Algebra - I) (New Course)

Faculty Code: 003

Subject Code: 1161001

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) Answer all the questions.

(2) Each questions carries 14 marks.

1 Attempt any seven:

 $7 \times 2 = 14$

- (1) Let $\phi = (i_1, i_2, i_3) \in S_n$. Prove that $\phi^2 = (i_1, i_3, i_2)$ and $\phi^3 = e$.
- (2) Define normal subgroup. Does all the subgroups of (Z, +) are normal subgroups in (Z, +)? (Y/N). Justify you answer.
- (3) In standard notation write down all the elements of symmetric group S_3 and its subgroup A_3 .
- (4) Define Sylow p-subgroup of a group G. What is order of Sylow p-subgroup of G?
- (5) Let G be a group, H < G and $a, b, c \in H$. Prove that $\left(ab^{-1}\right)c^{-1} \in H$.
- (6) Let R be a ring and I_1 , I_2 be two ideals of R. Prove that $I_1 \cap I_2$ is also an ideal of R.
- (7) Let R be a ring and I, J be two ideals of R. Define I + J and prove that I + J is also an ideal of R.
- (8) Let $\phi: G \to G'$ be a group homomorphism. It is obvious that $Ker \ \phi < G$. Does $Ker \ \phi$, a normal subgroup of G? Justify your answer.

2 Attempt any two:

 $2 \times 7 = 14$

- (1) Define maximal normal subgroup and simple group. For a group G and $H \Delta G$, prove that H is a maximal normal subgroup of G if and only if G/H is a simple group.
- (2) Let H be a group and K < H. Let [H : K] = 2. Prove that K is a maximal normal subgroup of H.
- (3) State and prove first fundamental theorem of group theory.
- (4) Let G be an abelian group and $0(G) \ge 2$. Prove that G is simple if and only if G is a cyclic group with prime order.
- (5) For $n \ge 5$, prove that the collection of normal subgroups of S_n is $\{\{e\}, A_n, S_n\}$.

3 Attempt any **one**:

 $1 \times 14 = 14$

- (a) Let $\phi: G \to G'$ be an onto homomorphism of groups. Prove that:
 - (i) $H < G \Rightarrow \phi(H) < G'$
 - (ii) $K < G' \Rightarrow \phi^{-1}(K) < G$
 - (iii) $H \Delta G \Rightarrow \phi(H) \Delta G'$
 - (iv) $K \Delta G' \Rightarrow \phi^{-1}(K) \Delta G$
 - (v) $H < G \text{ and } Ker \ \phi \subseteq H \Rightarrow \phi^{-1} (\phi(H)) = H$
 - (vi) Let $G\{H < G/Ker \ \phi \subseteq H\}$ and D = the collection of all subgroups of G. Prove that $\psi: C \to D$ defined by $\psi(H) = \phi(H)$, $\forall H \in C$ is a bijection.
- (b) (i) Let G be a finite group and P/O(G). Prove that $\exists g \in G \ni g^p = e$.
 - (ii) Prove that a group G, with O(G) = 56 can not be a simple group.

(c) Let R be a ring with $1 \in R$. Prove that for $n \ge 1$, the ideals of $M_n(R)$ [ring of $n \times n$ matrices over R] are given by $M_n(I)$, where I ranges through all the ideals of R.

4 Attempt any two:

 $2 \times 7 = 14$

- (a) State and prove Sylow's second theorem.
- (b) State and prove third isomorphism theorem of ring theory.
- (c) Define prime ideal. Let R be a commutative ring, $1 \in R$ and P is an ideal of R with $P \neq R$. Prove that P is a prime ideal of R if and only if R/P is an integral domain.
- (d) Let A, B be two ideals of a ring R. Define AB, the product of two ideals. Prove that AB is also an ideal of R.

5 Attempt any two:

 $2 \times 7 = 14$

- (a) Prove that A_n $(n \ge 5)$ is a simple group.
- (b) State and prove Eisenstein Criterion.
- (c) Define action of a group G on a non-empty set X. Prove that a group G acts on itself by the conjugate action $\phi: G \times G \to G$ defined by

$$\phi(g, x) = g x g^{-1}, \ \forall \ g, x \in G.$$

- (d) (i) Define nil ideal and nilpotent ideal of a ring R.
 - (ii) Prove that sum of two nilpotent ideals of R is also a nilpotent ideal of R.
 - (iii) Prove that sum of two nil ideals of R is also a nil ideal of R.